Steam and Condensate systems - Types of Steam Traps

Thermodynamic Steam Traps

Thermodynamic steam traps have a unique operating principle which relies on the dynamics of water and flash steam. They are simple, robust and reliable and can operate up to very high temperatures and pressures. Their construction, use and benefits are detailed on this page.

The thermodynamic trap is an extremely robust steam trap with a simple mode of operation. The trap operates by means of the dynamic effect of flash steam as it passes through the trap, as depicted in the image below. The only moving part is the disc above the flat face inside the control chamber or cap.

On start-up, incoming pressure raises the disc, and cool condensate plus air is immediately discharged from the inner ring, under the disc, and out through three peripheral outlets (i).

Hot condensate flowing through the inlet passage into the chamber under the disc drops in pressure and releases flash steam moving at high velocity. This high velocity creates a low pressure area under the disc, drawing it towards its seat (ii).

Operation of a thermodynamic steam trap

Operation of a thermodynamic steam trap

At the same time, the flash steam pressure builds up inside the chamber above the disc, forcing it down against the incoming condensate until it seats on the inner and outer rings. At this point, the flash steam is trapped in the upper chamber, and the pressure above the disc equals the pressure being applied to the underside of the disc from the inner ring. However, the top of the disc is subject to a greater force than the underside, as it has a greater surface area.

Eventually the trapped pressure in the upper chamber falls as the flash steam condenses. The disc is raised by the now higher condensate pressure and the cycle repeats (iv).

The rate of operation depends on steam temperature and ambient conditions. Most traps will stay closed for between 20 and 40 seconds. If the trap opens too frequently, perhaps due to a cold, wet, and windy location, the rate of opening can be slowed by simply fitting an insulating cover onto the top of the trap.

Advantages of the thermodynamic steam traps

Thermodynamic trap
Thermodynamic steam trap

Disadvantages of the thermodynamic steam trap

Anti-Air-Binding Disk
Anti-air-binding disc

Impulse steam trap

The impulse trap (as shown in the image on the right) consists of a hollow piston (A) with a piston disc (B) working inside a tapered piston (C) which acts as a guide. At 'start-up' the main Valve (D) rests on the seat (E) leaving a passage of flow through the clearance between piston and cylinder and hole (F) at the top of the piston. Increasing flow of air and condensate will act on the piston disc and lift the main Valve off its seat to give increased flow. Some condensate will also flow through the gap between the piston and disc, through E and away to the trap outlet.

As the condensate approaches steam temperature some of it flashes to steam as it passes through the gap. Although this is bled away through hole F it does create an intermediate pressure over the piston, which effectively positions the main Valve to meet the load. The trap can be adjusted by moving the position of piston (B) relative to the seat, but the trap is affected by significant backpressure. It has a substantial capacity, bearing in mind its small size. Conversely, the trap is unable to give complete shut-off and will pass steam on very light loads. The main problem however is the fine clearance between the piston and cylinder. This is readily affected by the dirt normally found in a steam system. The use of impulse traps is relatively limited.

Impulse steam trap

Advantages of the impulse steam trap

Disadvantages of the impulse steam trap

Labyrinth steam trap

A simple form of the labyrinth trap is shown in the image below. It consists of a series of baffles which can be adjusted by means of a handwheel. Hot condensate passing between the first baffle and the trap body is subject to a drop in pressure and some of it 'flashes' to steam. The space around the next baffle has to cope with an increased volume of hot condensate and prevents the escape of live steam. The baffle plates can be moved either in or out using the handwheel, which alters their position relative to the body, effectively altering the overall size of the orifice.

Labyrinth steam trap

Advantages of the labyrinth steam trap

Disadvantages of the labyrinth steam trap

Reference(s):
Spirax Sarco

Top of Page